



| USN |  |  |  |  |  |
|-----|--|--|--|--|--|

18EC56

# Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 Verilog HDL

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

## **Module-1**

- 1 a. Explain a typical design flow for designing VLSI IC circuits using the block diagram.
  - b. Explain the importance of HDLs.

(05 Marks)

c. Explain the trends in HDLs.

#### (05 Marks)

(12 Marks)

(10 Marks)

OR

- 2 a. Explain the different levels of abstraction used for programming in verilog. (08 Marks)
  - b. Write the verilog code for 4-bit ripple carry counter. Also write the stimulus.

# **Module-2**

- 3 a. Explain the components of verilog module with block diagram. (06 Marks)
  - b. Explain the following data types with an example in verilog.
    - i) Registers ii) Arrays iii) Parameters iv) Nets v) Integers. (10 Marks)
  - c. Explain the port connection rules in verilog.

(04 Marks)

#### OR

- 4 a. Write the verling description of SR latch. Also write stimulus code.
- (10 Marks)
- b. Explain \$display, \$monitor, \$finish and \$stop system tasks with examples.

#### (10 Marks)

### Module-3

- 5 a. What are rise, fall and turn off delays? How they are specified in verilog? (06 Marks)
  - b. What would be the output of the following for A = 4'b0111 and B = 4'b1001.
    - i) &B ii) A << 2 iii)  $\{A, B\}$  iv)  $\{2\{B\}\}$  v)  $A^B$  vi)  $A\|B$  vii) A\*B viii) A < B. (08 Marks)
  - c. Mention the symbol, truth table and an example for BUFIF1 and BUFIF0 primitive gates.

## (06 Marks)

#### OR

- 6 a. Design AOI based 4 to 1 multiplexer and write the verilog description and its stimulus.
  - (10 Marks)
  - b. Write the verilog data flow description for 4-bit full adder with carry look –ahead logic.

#### (10 Marks)

#### **Module-4**

- 7 a. Explain blocking and non-blocking assignments with an example. (10 Marks)
  - b. Write a verilog code for clock generation with a period of 20 units using forever loop.

(05 Marks)

c. Write the differences between the tasks and functions.

(05 Marks)

#### OR

- 8 a. Discuss sequential and parallel blocks with examples. (10 Marks)
  - b. Write a verilog program for 8:1 multiplexer using case statement. (10 Marks)

## Module-5

- 9 a. Write the verilog description for D flipflop using assign and deassign procedural continuous assignments. (10 Marks)
  - b. Explain defparam statement with an example.

(10 Marks)

# OR

- 10 a. What is logic synthesis? Explain the flow diagram for the designer's mind as the logic synthesis tool. (10 Marks)
  - b. What will be the following statements translate to when run on a logic synthesis tool: Assign  $\{C\text{-out}, sum\} = a + b + C$  in;

Assign out = (s)? i1 : i0,

(10 Marks)